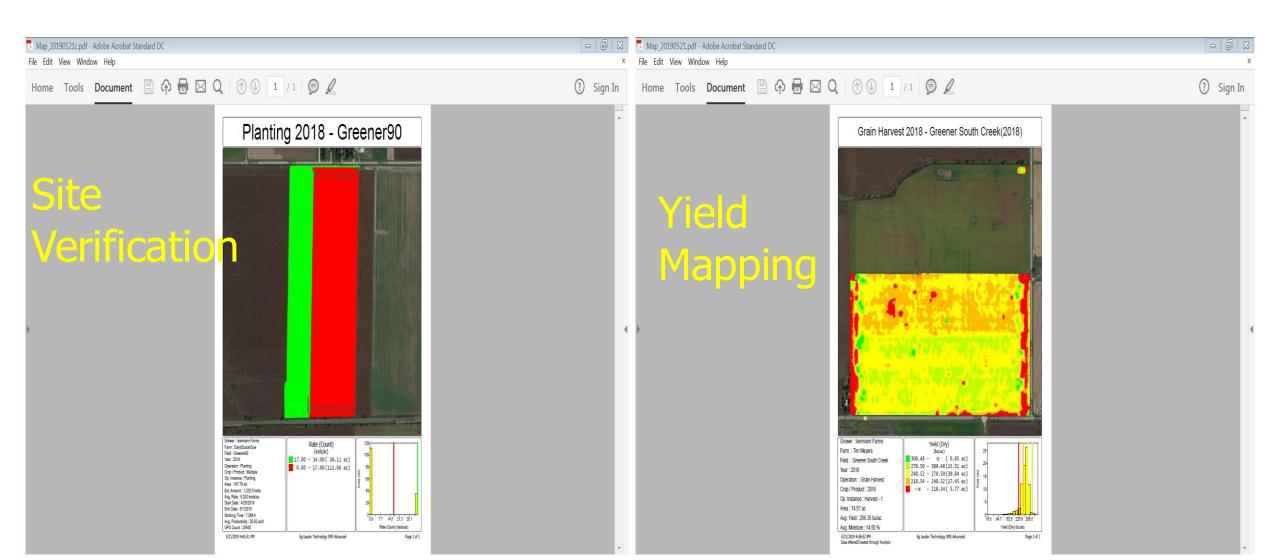


*Isemann*FARMS

2017 Illinois Beef Association Environmental Steward of the Year

What are we trying to do?

- Stop Erosion
- Stop N and P loss
- Increase soil health
- Increase "sustainability"
- Financial stability
- Environmental footprint
- Climate resiliency
- Adding livestock to the mix



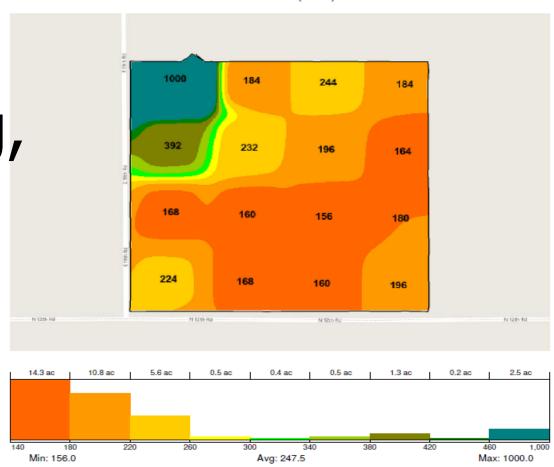
Limited Fall Application of N & P

Mapping: Site Verification and Yield Mapping. What went where and what were the results.

Data Analysis Report

Location: Non-Registered

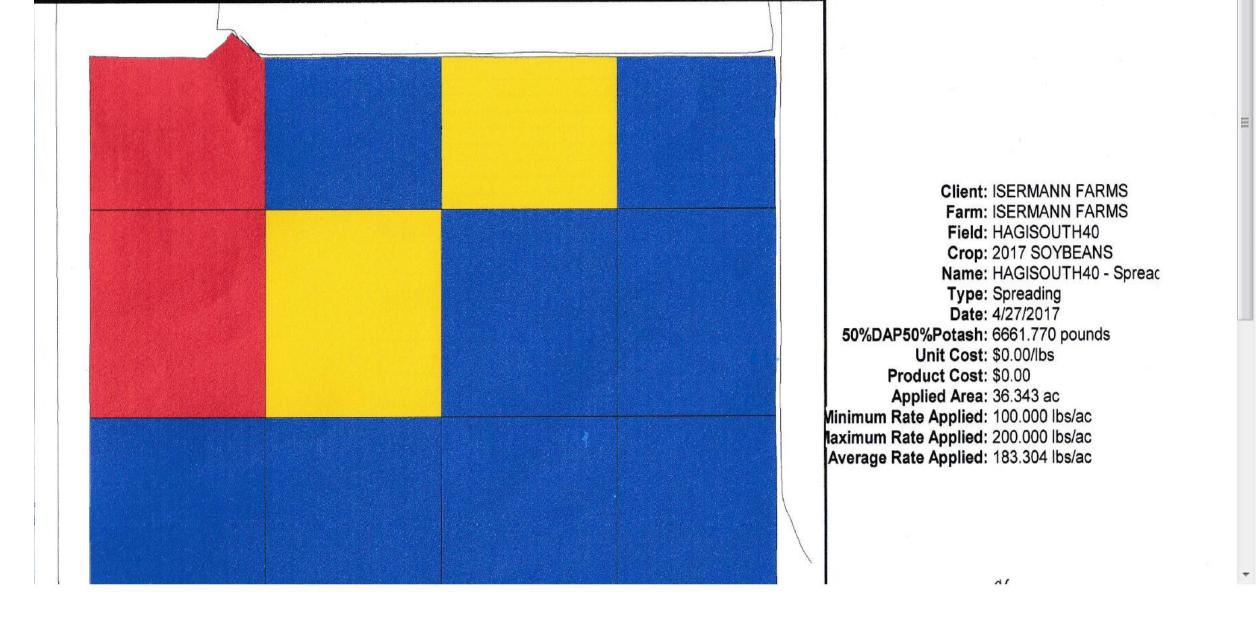
Customer: Isermann Farms 2017-04-25 Date:


Field: Hagi South 40

Acres: 36.38

Farm: All

Potassium (lb/ac)


Soil Testing, both grids and zones.

8.50 x 11.00 in

Copyright 2017 I.F.A.R.M.

April 25, 2017, 2:32 pm EDT

Variable rate fertilizer

Fertility Plan 2025

Crop Year 2025 Fertility							
Corn following soybeans							
Nutrient # per acre	Ν	Р	K	S			
Fall Strip Till	27	69	30	10	150# DAP, 50# Potash, 10# Sulfur, elemental, 6" deep in strip		
Spring Strip Refresh	60	0	0	0	20 Gal per acre 28% N in strip		
Starter Planter	7	24			6 gal/acre 10-34-00 starter fertilizer		
Total after planting	94	93	30	10			
MRTN	178						
Sidedress # N	84				28 gal per acre 28% N		

Iltiple applications of N & P spread risk of loss

Nitrogen Management

culator most rate of N

CORN NITROGEN RATE CALCULATOR

Finding the Maximum Return To N and Most Profitable N Rate
A Regional (Corn Belt) Approach to Nitrogen Rate Guidelines

This web site provides a process to calculate economic return to N application with different nitrogen and corn prices and to find profitable N rates directly from recent N rate research data. The method used follows a regional approach for determining corn N rate guidelines that is implemented in several Corn Belt states.

num return to P & K under development by University of Illi

ABOUT

MAPS

HELP

SINGLE PRICE

MULTIPLE PRICE

Rates and Charts

DISPLAY CHART (1)

☑ Return to N

☐ % of Max Yield

☐ EONR Frequency

☐ EONR vs. Yield

HELP

Definitions

Calculated Values

RECALCULATE

RETURN TO INPUT

State: Illinois Region: North Number of sites: 65

Rotation: Corn following soybean

Nitrogen Price (\$/lb):

0.40 4.00

Corn Price (\$/bu):

Price Ratio:

0.1

MRTN Rate (lb N/acre):

178

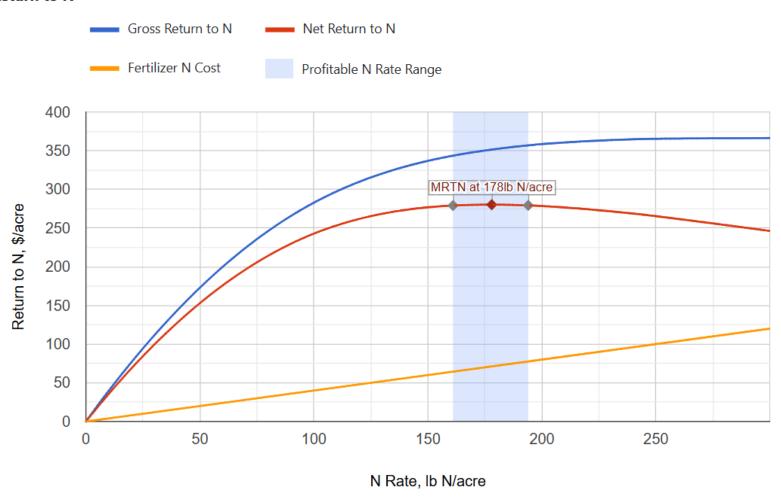
Profitable N Rate Range (lb N/acre): 161 - 194

Net Return to N at MRTN Rate (\$/acre):

\$280.23

Percent of Maximum Yield at MRTN Rate:

98%


556

UAN (32% N) at MRTN Rate (lb product/acre):

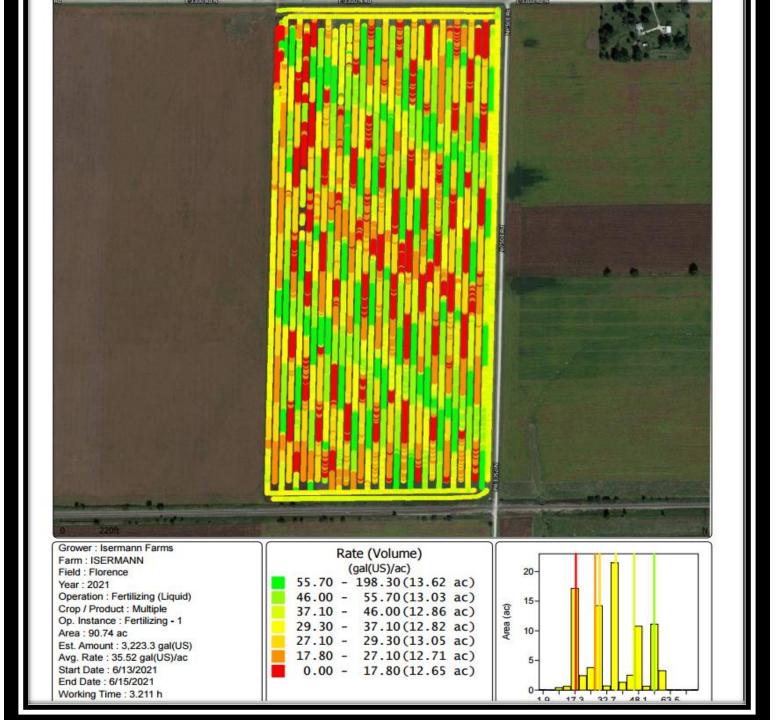
\$71.20

UAN (32% N) Cost at MRTN Rate (\$/acre):

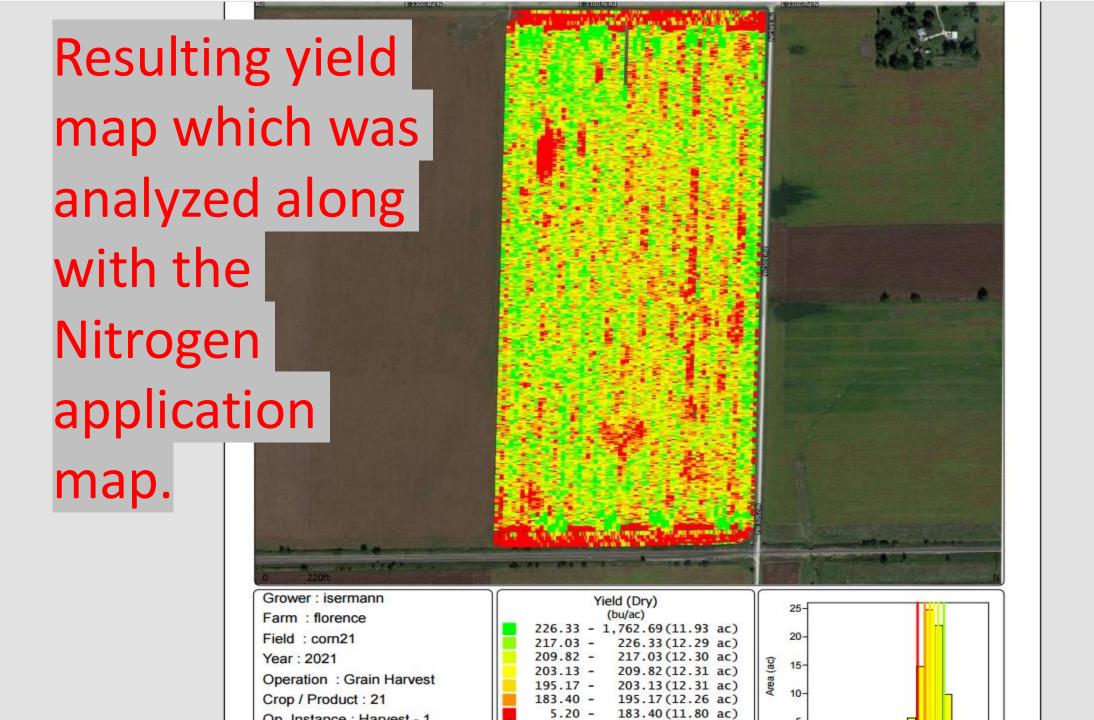
Return to N

Collaboration with University Researchers to prove our North program works.

ILLINOIS ACES


Data-Intensive Farm Management Project

Information for Participating Farmers


What is DIFM?

DIFM (Data Intensive Management Project) uses precision agriculture technology, with researchers and farmers working together conducting large-scale, on-farm "checkerboard" field trials, gathering vast amounts of data on how crop yields respond to input application rates, field characteristics, and weather. The goal of DIFM is to revolutionize farm management, working with farmers and crop consulting to implement scientific experiments on their own farms, enabling them to increase profits by making data-driven management decisions.

Five different rates of Nitrogen were randomly applied across the field resulting in over 300 separate areas.

Field Management Information

- Grower's status quo nitrogen rate strategy: 130 lbs/ac uniform application.
- Nitrogen target rates: 63, 94, 130, 164, 203 (lbs /ac)
- · Applicator width: 40 feet
- Harvester width: 20 feet

Summary

A corn nitrogen rate trial was conducted on the Isermann_Florence80 field in crop year 2021. The trial was implemented with a high level of accuracy. The best estimate provided by the data and model is that, under growing conditions identical to those of the field in 2021, implementing the recommended site-specific nitrogen application rate strategy would have increased profits by approximately \$2/ac. The data and model placed a 95% level of statistical confidence that this profit gain would have been between approximately \$1 and \$4 per acre. In short, the data and analysis provided strong evidence that the farmer's status quo management plan was quite efficient, and DIFM recommends no manor changes to the current N management strategy.

Trial Design and Implementation

Plots were all 40 feet wide, uan32 applicator was 40 feet wide, and harvester was 20 feet wide. The field's status quo nitrogen application plan (that is, the one that would have been used had there been no field trial conducted) was to apply 130 lbs/ac uniformly across the field. The status quo rate was assigned to a buffer zone around the perimeter of the trial and ditches, but observations from the buffer zone were not included as part of the trial in later analysis. The producer applied a 0 lbs/ac base N rate before implementing the

Livestock Waste Application

GPS Auto-steer application to achieve an even application.

Farm: Isermann Field: Fred 80 East

Year: 2018

Operation: Site Verification Crop / Product: NO Product Op. Instance: Instance - 1 Area: 20.70 ac Start Date: 5/1/2018 End Date: 5/2/2018 Working Time: 1.015 h Avg. Productivity: 20.40 ac/h GPS Count: 3653 Dataset - Name spreader(20.76 ac)

5/21/2019 4:39:35 PM Ag Leader Technology SMS Advanced

Page 1 of 1

To: ISERMANN FARMS INC 1931 N 12TH RD STREATOR, IL 61364

Purchase Order: 311-6521

Lab Number: 69939

Sample ID: 1

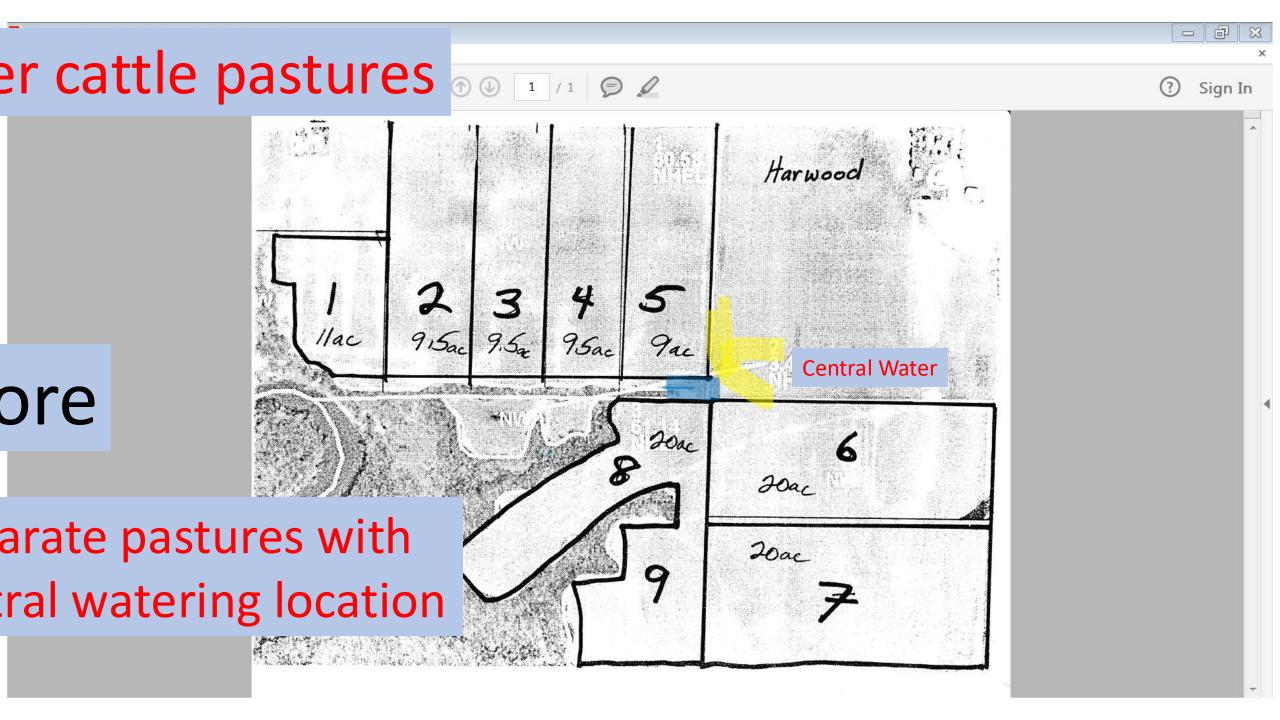
Manure Type: BEEF, SOLID WITH BEDDING (5)

MANURE ANALYSIS

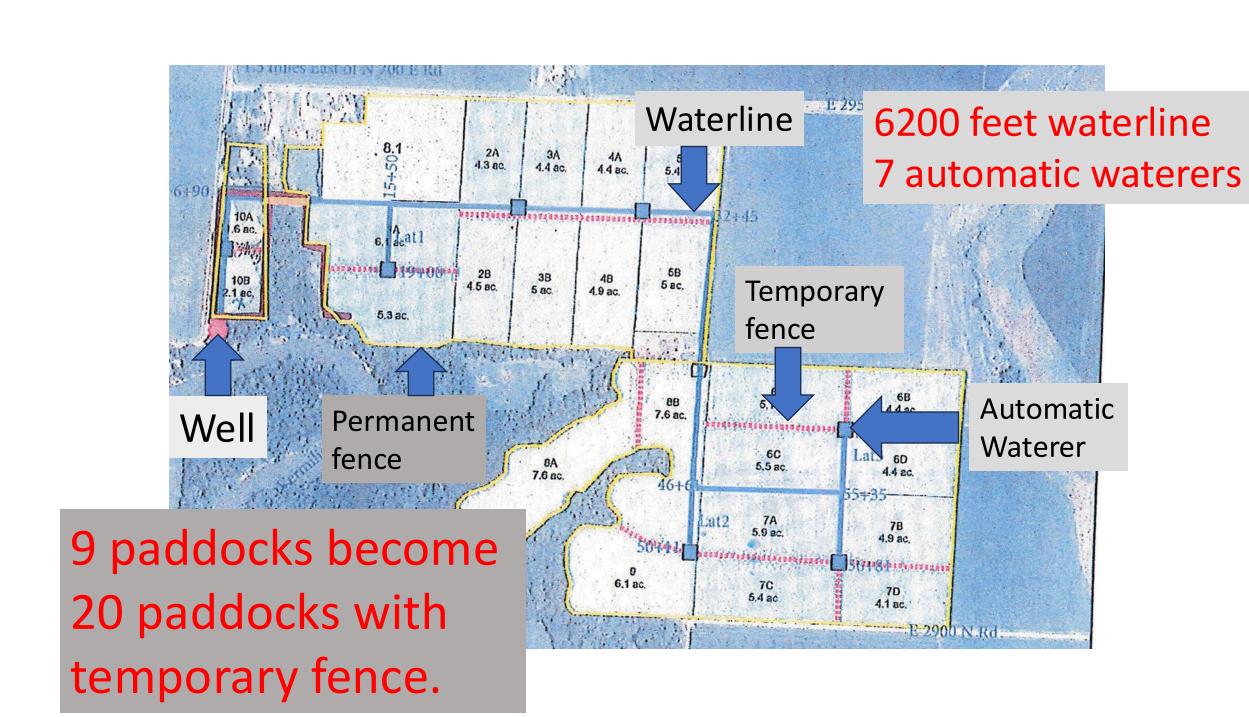
Date Received: 11/6/2024

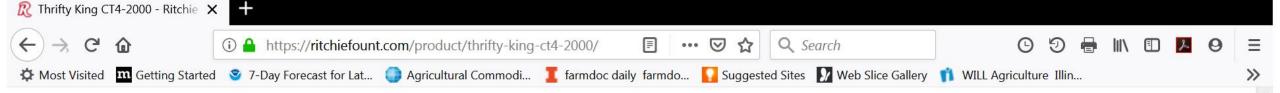
Date Reported: 11/13/2024 Page: 1 of 2

Analysis	Unit	Analysis Result (As Received)	Pounds Per Ton	First Year Availability [@] Pounds Per Ton
Moisture	%	87.91	1758	
Solids	%	12.09	242	
Ash @ 550 C	%	3.52	70.4	
Organic Matter (LOI @ 550 C)	%	8.57	171.4	
Organic Carbon (LOI @ 550 C)	%	4.97	99.4	
Carbon:Nitrogen Ratio (C:N)	-		5.8:1	
Nitrogen, Total Kjeldahl (TKN)	%	0.862	17.2	9.3 *
Phosphorus (P)	%	0.174	8.0 (as P ₂ O ₅)	8.0 * (as P ₂ O ₅)
Potassium (K)	%	0.404	9.7 (as K ₂ O)	9.7 * (as K₂O)
Sulfur (S)	%	0.08	1.6	0.9 #
Magnesium (Mg)	%	0.12	2.4	1.3 #
Calcium (Ca)	%	0.12	2.5	1.3 #



Strip till





2A 3A 4A 4.3 so. 44 sc. 4.4 sc. 38 5 ac. Prescribed 6A 5.1 ad. 68 4.4 ac 6D 4.4 ac. Grazing Plan with Livestock 7A 5.9 ac. 7B 4.9 ac. 7C 5.4 ac. 7D 4.1 ac Watering Prepared with assistance from USDA-Natural Resources Conservation Service B existing watering Facility existing well WateringFacility - Water pipeline ···· Temporary Fence Paddock clu_a_il099

Thrifty King CT4-2000

SKU: #16430

Thrifty King insulates the water so well that you can make it through the winter without supplying heat in many areas, and it takes little electricity in those areas where the winter is severe or when energy free requirements are not met. The water is completely surrounded by fully insulated polyethylene plastic – including an insulated elliptical enclosure covering the drink areas. The covered water keeps the water cooler in summer and reduces loss of water due to evaporation. The closure also protects against mosquitoes breeding, lowering the risk of the spread of West Nile Virus. The CT4-2000 is a four trough automatic waterer for cattle ideal for a fence line or stand-alone application. Optional summer cover is available for the warmer months.

HERD CAPACITY

Beef

Seven automatic watering stations

Comprehensive Nutrient Management Plan for Beef Operation

David Isermann

Comprehensive Nutrient Management Plan

> Beef Cattle Operation

La Salle County-Streator, Illinois

Prepared by Alan M. Madison TSP 03-2411 Matthew L. Wagner, P.E. TSP 06-5610 July 2018

Producer Copy

Looked at the following

Soil tests Yields Soil types Farming practices Manure rates

entify nd sess il type r N loss

Field ID	Tile > 50%	High Risk N- Leaching Soil Type	Soil Type	*Application Timing	Risk Assessment	
Baker 120	No	No – Elburn	Silt Loam	Fall seeded cover crops	Low	
Hagi North	Yes	No – Drummer	Silty Clay Loam	Fall seeded cover crops	Low	
Hagi South	Yes	No – Arrowsmith	Silt Loam	Fall seeded cover crops	Low	
Fred West	Yes	No – Drummer	Silt Clay Loam	Fall seeded cover crops	Low	
Fred East	Yes	No – Drummer	Silty Clay Loam	Fall seeded cover crops	Low	
Greener 90 West	Yes	No – Arrowsmith	Silt Loam	Fall seeded cover crops	Low	
Greener 90 Mid	Yes	No – Hartsburg	Silty Clay Loam	Fall seeded cover crops	Low	
Greener 90 East	Yes	No – Hartsburg	Silty Clay Loam	Fall seeded cover crops	Low	
Florence 80	Yes	No – Hartsburg	Silty Clay Loam	Fall seeded cover crops	Low	

^{*} See NRCS Nitrogen Management Guidelines to compare nitrogen risk assessments with optional application practices and application timing.

Fields with High Risk N-Leaching Characteristics

None of the dominant critical soil types, or any combination equal to or greater than 50%, involve soil types that fall in the high risk category for nitrogen risk assessment. However, all of the fields in the plan, with the exception of Baker 120, contain tile on more than 50% of the crop ground. Thus, all fields (except Baker 120) must be evaluated and managed for nitrogen risk concerns. David has addressed this concern under existing management practices and will continue to do so under the plan by utilizing fall seeded cover crops, as well as applying both commercial and organic nitrogen in the spring within 30 days of planting.

2. Projected P & K Levels

FO. 4 4 F.D.	n	D. F	AV A D	W Y I	W T I	
Field ID	P Level at	P Level at	*Years to P	K Level at		
	Start of Plan	End of Plan	test of 300	Start of Plan	End of Plan	
Baker 120	40	44	260	198	292	
Hagi North	52	49	N/A	256	300	
Hagi South	36	49	82	184	298	
Fred West	78	58	N/A	268	285	
Fred East	71	43	N/A	338	337	
Greener 90 West	36	48	88	246	303	
Greener 90 Mid	57	54	N/A	332	314	
Greener 90 East	77	49	N/A	394	383	
Florence 80	56	47	N/A	302	299	

Note

ze soil

ure

, manure

ysis, and

ication

d K will

ed limits.

etermine if

Equations used to determine change in soil test P and K:

Change in P (Lb/A) = Round(NetP2O5/9)

Change in K (Lb/A) = Round(NetK2O/4)

Years to P test of 300 Lbs/acre calculated from the beginning of the plan.

* Using the manure application rates as provided in the CNMP, none of the fields present a phosphorus buildup concern. Although Baker 120, Hagi South and Greener 90 West show a slight increase in levels of phosphorus over the course of the four-year plan, this increase is negligible as it will take 82 to 260 years to reach a P test of 300 Lbs/acre. Accordingly, phosphorus buildup is not a true concern on those fields. The fields show an increase to reach healthy levels of phosphorus in the soil. This is achieved by commercial fertilizer applications in the fall.

PSNT, Presidedress Nitrate Test

3505 Conestoga Dr. Fort Wayne, IN 46808 260.483.4759 algreatlakes.com

To: ISERMANN FARMS INC 1931 N 12TH RD STREATOR, IL 61364 Date Received: 6/18/2024
Date Reported: 6/19/2024
PO Number: 170-0161

NITROGEN ANALYSIS

Page: 1 of 1

Sample ID	Lab Number	Nitrate NO3-N ppm	Ammonium NH4-N ppm
1	35909	18	
2	35910	17	
3	35911	20	
4	35912	21	
5	35913	23	
	#1 HagiBaker S #2HagiBaker So #3HagiBaker No #4 Greener 90 (#5 Greener 90 (outh in row orth Center 30	

Plant
Tissue
Testing for
Nutrient
Sufficiency

Hagi Baker

North

3505 Conestoga Dr. Fort Wayne, IN 46808 260.483.4759 algreatlakes.com

Purchase Order: 170-5029

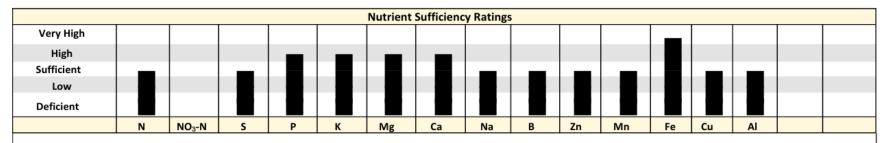
Sample ID: 1

Plant Type: CORN

Growth Stage: PRIOR TO TASSELING

Plant Part: LEAF

Date Received: 6/18/2024


Date Reported: 6/19/2024 Page: 1 of

To: ISERMANN FARMS INC 1931 N 12TH RD STREATOR, IL 61364

PLANT ANALYSIS REPORT

Ι.						Date Reported: 6/19/2024 Page: 1 of						of 4						
	Date Sampled	Lab Number	Nitrogen (%)	Nitrate Nitrogen (%)	Sulfur (%)	Phosphorus (%)	Potassium (%)	Magnesium (%)	Calcium (%)	Sodium (%)	Boron (ppm)	Zinc (ppm)	Manganese (ppm)	Iron (ppm)	Copper (ppm)	Aluminum (ppm)		
	06/15	458809	3.66		0.30	0.46	3.44	0.34	0.58	0.01	9	37	75	281	10	125		
	Normal	Range	3.00 4.00		0.15 0.50	0.25 0.45	2.00 2.50	0.13 0.30	0.25 0.50	0.01 0.03	4 25	20 60	20 150	30 250	5 15	1 300		

	N/S	N/K	P/S	P/Zn	K/Mg	K/Mn	Fe/Mn	Ca/B				
Actual Ratio	12.3	1.1	1.5	124	10.1	459	3.7	633				
Expected Ratio	10.0	1.4	1.1	93	10.5	143	0.9	259				

Hay test

3505 Conestoga Dr. Fort Wayne, IN 46808 260.483.4759 algreatlakes.com

To: ISERMANN FARMS, INC 1931 N 12TH RD STREATOR, IL 61364 USA

COPY: PD CK 20705

Lab Number: 300002

Sample ID: 1

FEED ANALYSIS REPORT

Date Received: 10/26/2016

Date Reported: 10/31/2016 Page: 1 of 6

		Δnalvsis	Analysis Result				
Analysis	Unit	As Received Basis	Dry Basis				
Moisture	%	16.24					
Dry Matter	%	83.76					
Nitrogen	%	2.59	3.09				
Crude Protein	%	16.22	19.31				
Acid Detergent Fiber (ADF)	%	28.8	34.4				
Neutral Detergent Fiber (NDF)	%	45.4	54.2				
Total Digestible Nutrients (TDN)	%	53.2	63.3				
Net Energy of Maintenance (NEM)	Mcal/lb	0.52	0.62				
Net Energy of Gain (NEG)	Mcal/lb	0.29	0.35				
Net Energy of Lactation (NEL)	Mcal/lb	0.54	0.65				
Digestible Dry Matter (DDM)	%		62.1				
Dry Matter Intake (DMI)	%		2.2				
Relative Feed Value (RFV)	-		107				

Approved By:

Approval Date:

10/31/2016

Don Burgess - Agronomist / Technical Services - CPAg/CPSS/CCA

Pasture condition scoring to determine condition of pastures at the end of each grazing season

Harwood F	arm													
Paddock	date	Sample	Seeding date	soil type	Lat	Long	% cover	Plants in descendi	ng population					
Paddock 4	9/28/2016	1		Milford	41.054263	-88.787750	64.33	alfalfa	orchard grass					
Paddock 4	9/28/2016	2		Milford	41.053290	-88.787885	56.44	orchard grass	alfalfa					
Paddock 4	9/28/2016	3	3	Milford	41.052431	-88.787597	52.20	orchard grass						
Paddock 4	9/28/2016	4		Thorp	41.051582	-88.788897	24.99	festololium	barnyard	white clover				
9.5 ac														
Daddada F	0/20/2046		4/5/2046	T L	44 054022	00 706500	FO 45		f t - l - l'	1-II 6	e e e e e e e		-1-11-	
Paddock 5	9/28/2016		4/5/2016	•		-88.786580		orchard grass	festulolium	tall fescue	timothy	meadow brome	alsike	
Paddock 5	9/28/2016			Thorp	41.052389	-88.786740	60.04	orchard grass	festulolium	tall fescue	timothy	meadow brome		
Paddock 5	9/28/2016	3	3	Milford	41.053654	-88.786800	15.00	orchard grass	festulolium	tall fescue	timothy	meadow brome	foxtail	
Paddock 5	9/28/2016	4	l	Milford	41.054215	-88.786912	51.49	orchard grass	festulolium	tall fescue	timothy	meadow brome	dandelion	
9 ac														
Paddock 6	9/28/2016	1	2015	Starks	41.050756	-88.785526	94.00	orchard grass	red clover	dandelion	thistle			
Paddock 6	9/28/2016)	Starks		-88.784746		orchard grass	red clover	thistle				
Paddock 6	9/28/2016			Starks	41.051220	-88.783863		orchard grass	red clover	thistle				
Paddock 6	9/28/2016	4	ļ	Somonauk		-88.783863		orchard grass	red clover	white clover	thistle			
Paddock 6	9/28/2016	5	i	Somonauk	41.050261	-88.781583	83.59	red clover	orchard grass	thistle	foxtail			
20 ac														
	_													

2016 score

